Certain K3 Surfaces Parametrized by the Fibonacci Sequence Violate the Hasse Principle

نویسندگان

  • DONG QUAN NGOC NGUYEN
  • DONG QUAN
  • NGOC NGUYEN
چکیده

For a prime p ≡ 5 (mod 8) satisfying certain conditions, we show that there exist an infinitude of K3 surfaces parameterized by certain solutions to Pell’s equation X2 − pY 2 = 4 in the projective 5-space that are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction. Further, these surfaces contain no zero-cycle of odd degree over Q. As an illustration for the main result, we show that the prime p = 5 satisfies all of the required conditions in the main theorem, and hence, there exist an infinitude of K3 surfaces parameterized by the Fibonacci sequence that are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The arithmetic of certain del Pezzo surfaces and K3 surfaces

We construct del Pezzo surfaces of degree 4 violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of K3 surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.

متن کامل

Cubic Points on Cubic Curves and the Brauer-manin Obstruction on K3 Surfaces

We show that if over some number field there exists a certain diagonal plane cubic curve that is locally solvable everywhere, but that does not have points over any cubic galois extension of the number field, then the algebraic part of the Brauer-Manin obstruction is not the only obstruction to the Hasse principle for K3 surfaces.

متن کامل

Failure of the Hasse Principle for Enriques Surfaces

We construct an Enriques surface over Q with empty étale-Brauer set (and hence no rational points) for which there is no algebraic Brauer-Manin obstruction to the Hasse principle. In addition, if there is a transcendental obstruction on our Enriques surface, then we obtain a K3 surface that has a transcendental obstruction to the Hasse principle.

متن کامل

Generalized Fibonacci and Lucas cubes arising from powers of paths and cycles

The paper deals with some generalizations of Fibonacci and Lucas sequences, arising from powers of paths and cycles, respectively. In the first part of the work we provide a formula for the number of edges of the Hasse diagram of the independent sets of the h power of a path ordered by inclusion. For h = 1 such a diagram is called a Fibonacci cube, and for h > 1 we obtain a generalization of th...

متن کامل

Higher Dimensional Analogues of Châtelet Surfaces

We discuss the geometry and arithmetic of higher-dimensional analogues of Châtelet surfaces; namely, we describe the structure of their Brauer and Picard groups and show that they can violate the Hasse principle. In addition, we use these varieties to give straightforward generalizations of two recent results of Poonen. Specifically, we prove that, assuming Schinzel’s hypothesis, the non-m powe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017